USER ORIENTED TRAJECTORY SEARCH FOR TRIP RECOMMENDATION

Shuo Shang1 Ruogu Ding2 Bo Yuan3 Kexin Xie1
Kai Zheng1 Panos Kalnis2

1University of Queensland
2King Abdullah University of Science and Technology
3Tsinghua University
TO BE SHORT...

- How can I go from Park Inn Berlin to Humboldt University?
- We recommend a trajectory that is spatially closest.
- I prefer public transportation.
- We recommend a trajectory that is not-so-close via S-Bahn.
OUTLINE

- Introduction
- Methods
 - Preliminaries
 - Baseline: Spatial-First
 - UOTS Query Processing
- Experiments
- Summary
TRAJECTORY SEARCH

- Given: a set of trajectories and a set of query locations
- Task: finding trajectories connecting/close to the query locations
HOWEVER. . .

- Spatial domain is not sufficient!
 - Recommending the trajectory of a train passenger to a car driver
 - Recommending the trajectory of an office lady to a computer scientist
TEXTUAL ATTRIBUTES

- Features of trajectories
- Preference of travelers

<table>
<thead>
<tr>
<th></th>
<th>tollway</th>
<th>highway</th>
<th>off road</th>
<th>travel style</th>
<th>transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_q</td>
<td>0%</td>
<td>>70%</td>
<td><10%</td>
<td>independent</td>
<td>by private vehicle</td>
</tr>
<tr>
<td>$K_{\tau 1}$</td>
<td>20%</td>
<td>60%</td>
<td>20%</td>
<td>grouped</td>
<td>by bus</td>
</tr>
<tr>
<td>$K_{\tau 2}$</td>
<td>0%</td>
<td>80%</td>
<td>0%</td>
<td>independent</td>
<td>by private vehicle</td>
</tr>
<tr>
<td>$K_{\tau 3}$</td>
<td>0%</td>
<td>70%</td>
<td>20%</td>
<td>grouped</td>
<td>by bus</td>
</tr>
</tbody>
</table>
WHY DIFFICULT?

- High dimensionality in textual domain
- . . and therefore high computational complexity
- Baseline: Spatial-First Trajectory Search
DIFFERENT IN. . .

- Trajectory Similarity Search
 - distance between (trajectory, trajectory)
 - spatial only
 - free space

- Spatial Keyword Search
 - simple keyword matching
 - invalid optimization in spatial networks
 - single query location
OUTLINE

- Introduction
- Methods
 - Preliminaries
 - Baseline: Spatial-First
 - UOTS Query Processing
- Experiments
- Summary
ROAD NETWORKS AND TRAJECTORIES

Road Networks
- Model: connected and undirected planar graphs $G(V, E)$
- E: weighted, spatial distance
- V: mapped objects, even if there is no "branch"

Trajectories
- Model: $\tau = \{ p_1, p_2, ..., p_n \}$
- Aligned to the vertexes by map-matching algorithms
Spatial-Textual Distance Function

- **Spatial distance**
 - Sigmoid function $S_{\text{dist}}(O_q, \tau)$

- **Textual distance**
 - Jaccard distance $T_{\text{dist}}(K_q, K_\tau)$

- **Spatial-textual distance**
 - $ST_{\text{dist}}(q, \tau) = \lambda \times S_{\text{dist}}(O_q, \tau) + (1 - \lambda) \times T_{\text{dist}}(K_q, K_\tau)$
PROBLEM DEFINITION

- Given a trajectory set T_r, a query input q, including a location set O_q and a textual attribute set K_q . . .
- User Oriented Trajectory Search (UOTS) finds the trajectory $\tau \in T_r$ with the minimum value of $ST_{\text{dist}}(q, \tau)$
- . . . such that $ST_{\text{dist}}(q, \tau) \leq ST_{\text{dist}}(q, \tau_0), \forall \tau_0 \in T_r \setminus T$
SPATIAL-FIRST

1. Spatial Domain

2. Textual Domain

\(o_1, o_2, o_3, o_4\)

\(K_q\)
SPATIAL-FIRST

1. Spatial Domain

2. Textual Domain

InfoCloud Group
information management in large infrastructures
SPATIAL-FIRST

1. **Spatial Domain**

 - r_1, r_2, r_3, r_4
 - r_1: O_1
 - r_2: O_2
 - r_3: O_3
 - r_4: O_4

2. **Textual Domain**

 - K_a
SPATIAL-FIRST

1. Spatial Domain

2. Textual Domain

InfoCloud Group
information management in large infrastructures
1. Spatial Domain

2. Textual Domain

\(K_a \)
SPATIAL-FIRST

1. Spatial Domain

2. Textual Domain
Spatial-First

1. Spatial Domain

2. Textual Domain
Spatial-First

1. Spatial Domain

2. Textual Domain

InfoCloud Group
information management in large infrastructures
SPATIAL-FIRST

1. Spatial Domain

2. Textual Domain
UOTS QUERY PROCESSING

1. Spatial Domain

2. Textual Domain
EXPERIMENTS
EXPERIMENTS
SUMMARY

- Trajectory search taking **user preferences** into consideration
- Collaborative search with . . .
 - A pair of **bounds**
 - A **heuristic** strategy
 - Extension to **ordered** query locations
SUMMARY

- Trajectory search taking user preferences into consideration
- Collaborative search with . . .
 - A pair of bounds
 - A heuristic strategy
 - Extension to ordered query locations

- Outlook
 - Low sample rate trajectories...
 - Combining trajectories?
Q&A

- Thank you!